Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

Yong-Hong Wen, Mao-Jie Li, Shu-Sheng Zhang* and Xue-Mei Li

College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, 266042 Qingdao, Shandong,
People's Republic of China

Correspondence e-mail: shushzhang@126.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.032$
$w R$ factor $=0.083$
Data-to-parameter ratio $=8.4$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved
\qquad

N-(4-Methoxyphenyl)-2-(quinolin-8-yloxy)acetamide monohydrate

In the title compound, $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$, all bond lengths and angles are within normal ranges. The dihedral angle formed by the benzene ring with the quinoline moiety is $67.06(7)^{\circ}$. Molecules are linked into chains along the a axis by intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}, \quad \mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds involving the solvent water molecule. The packing is further stabilized by $\pi-\pi$ interactions.

Comment

Recently, we have reported the structure of an amide-type acyclic compound with 8-hydroxyquinolinate as the skeleton, namely N-phenyl-2-(quinolin-8-yloxy)acetamide hemihydrate, (II) (Li et al., 2005). We have synthesized and carried out the structure determination of the title compound, (I), reported here.

All bond lengths and angles in (I) (Table 1) are within normal ranges (Allen et al., 1987) and comparable with those in the related compound (II). The dihedral angle formed by the benzene ring with the quinoline moiety is $67.06(7)^{\circ}$. There is one intramolecular hydrogen bond, viz. $\mathrm{C} 13-\mathrm{H} 13 A \cdots \mathrm{O} 2$, forming a six-membered ring. In the crystal structure, molecules are linked into chains along the a axis by intermolecular $\mathrm{N} 2-\mathrm{H} 2 A \cdots \mathrm{O} 1 W^{\mathrm{i}}, \quad \mathrm{O} 1 W-\mathrm{H} 2 W 1 \cdots \mathrm{O} 2^{\mathrm{ii}}$ and $\mathrm{O} 1 W-$ $\mathrm{H} 1 W 1 \cdots \mathrm{~N} 1^{\mathrm{ii}}$ hydrogen bonds (Table 2 and Fig. 2) involving the solvent water molecule. The packing is further stabilized by $\pi-\pi$ interactions involving the benzene rings ($C g 2$ is the centroid of the $\mathrm{C} 12-\mathrm{C} 17$ benzene ring): $C g 3 \cdots C g 3\left(-\frac{1}{2}+x, \frac{1}{2}-\right.$ $y,-z)=3.737 \AA$.

Experimental

To a solution of 8 -hydroxyquinoline ($2.9 \mathrm{~g}, 20 \mathrm{mmol}$) in acetone $(40 \mathrm{ml})$ were added 2 -chloro- N -(4-methoxyphenyl) acetamide (3.99 g , $20 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(3.04 \mathrm{~g}, 22 \mathrm{mmol})$ and $\mathrm{KI}(0.5 \mathrm{~g})$, and the resulting mixture was stirred at 333 K for 5 h . After cooling to room temperature, the mixture was washed three times with water and then filtered. The title compound was obtained after drying the yellow powder at room temperature for 48 h . Yellow single crystals suitable for X-ray diffraction study were obtained by slow evaporation of a petroleum ether-ethyl acetate $(1: 3 \mathrm{v} / \mathrm{v})$ solution over a period of 6 d .

Received 5 September 2005
Accepted 3 October 2005
Online 12 October 2005

Crystal data

$\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=326.34$
Orthorhombic, $P_{\circ} 2_{1} 2_{1} 2_{1}$
$a=6.8814$ (13) \AA
$b=11.627$ (2) \AA
$c=20.468(4) \AA$
$V=1637.6(5) \AA^{3}$
$Z=4$
$D_{x}=1.324 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Siemens SMART 1000 CCD areadetector diffractometer
ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.961, T_{\text {max }}=0.989$
9310 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$
$w R\left(F^{2}\right)=0.084$
$S=1.12$
1901 reflections
225 parameters
H atoms treated by a mixture of independent and constrained refinement

Mo $K \alpha$ radiation
Cell parameters from 4023 reflections
$\theta=2.6-25.8^{\circ}$
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Plate, yellow
$0.42 \times 0.42 \times 0.12 \mathrm{~mm}$

1901 independent reflections
1737 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.018$
$\theta_{\text {max }}=26.1^{\circ}$
$h=-8 \rightarrow 8$
$k=-13 \rightarrow 14$
$l=-25 \rightarrow 24$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0392 P)^{2}\right. \\
& \quad+0.1826 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.13 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.14 \mathrm{e}^{-3} \AA^{-3}
\end{aligned}
$$

Table 1
Selected bond lengths (\AA).

$\mathrm{O} 1-\mathrm{C} 8$	$1.371(2)$	$\mathrm{N} 2-\mathrm{C} 11$	$1.340(2)$
$\mathrm{O} 1-\mathrm{C} 10$	$1.418(2)$	$\mathrm{N} 2-\mathrm{C} 12$	$1.426(2)$
$\mathrm{O} 2-\mathrm{C} 11$	$1.223(2)$		

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{O} 1 W^{\mathrm{i}}$	0.86	2.01	$2.853(2)$	166
$\mathrm{O} 1 W-\mathrm{H} 1 W 1 \cdots \mathrm{~N}^{\mathrm{ii}}$	$0.87(3)$	$2.02(3)$	$2.886(3)$	$176(3)$
O1 $^{\mathrm{ii}} W-\mathrm{H} 2 W 1 \cdots \mathrm{O}^{\mathrm{ii}}$	$0.84(3)$	$1.93(3)$	$2.762(2)$	$173(2)$
$\mathrm{C} 13-\mathrm{H} 13 A \cdots \mathrm{O}^{2 i}$	0.93	2.41	$2.889(3)$	112

Symmetry code: (i) $x-1, y, z$; (ii) x, y, z.

All H atoms were located in difference Fourier maps and all except water H atoms, which were refined freely, were constrained to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}$ distances in the range $0.93-0.97 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ or $1.5 U_{\text {eq }}(\mathrm{C})$ for methyl H atoms. The Friedel reflections were merged before the final refinement because of the absence of any significant anomalous scattering effects.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

This project was supported by the Program for New Century Excellent Talents in Universities (No. NCET-04-

Figure 1
The structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Figure 2
Packing diagram of (I), showing the intermolecular hydrogen bonds (dashed lines), viewed down the b axis.
0649), and by the Project of Educational Administration of Shandong Province (No. J04B12).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, S1-19.

Li, X.-M., Wen, Y.-H., Li, M.-J. \& Zhang, S.-S. (2005). Acta Cryst. E61, o2389o2390.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

